## Synthesis of the Methyl Ester of the Magnesium-free Derivative of Chlorophyll $c_2$

By PETER S. CLEZY\* and CHRISTOPHER J. R. FOOKES

(Department of Organic Chemistry, University of New South Wales, P.O. Box 1, Kensington N.S.W., 2033, Australia)

Summary The synthesis is reported of 7',7''-dehydro-2,4dide-ethyl-2,4-divinylphaeoporphyrin  $a_5$  dimethyl ester (1c) which is the methyl ester of the magnesium-free derivative of chlorophyll  $c_2$  (1b).

The chlorophyll c component of many marine algae has been shown to consist of a mixture of two components  $(c_1 \text{ and } c_2)$ , while in some species chlorophyll  $c_2$  occurs without chlorophyll  $c_1$ .<sup>1</sup> The structures of the chlorophylls  $c_1$  and  $c_2$  have been reported<sup>2,3</sup> as (1a) and (1b) respectively. We now describe the synthesis of (1c), a derivative of chlorophyll  $c_2$ .



The acetoxymethyl derivative of the pyrrole  $(2a)^4$  was condensed in MeCO<sub>2</sub>H with the  $\alpha$ -free pyrrole  $(2b)^5$  to yield the dipyrrylmethane (3a). The aldehyde derivative (3b)was obtained by established procedures.<sup>6</sup> Rearrangement of pyrrole  $(2c)^7$  with thallium(III) nitrate in methanol<sup>8</sup> produced (2d) which, after reduction, acetylation and acetoxylation furnished (2e). Condensation of (2e) with the  $\alpha$ -free pyrrole  $(2f)^5$  in MeCO<sub>2</sub>H yielded the dipyrrylmethane (3c) from which the acid (3d) was derived by hydrogenolysis.

Condensation of the dipyrrylmethanes (3b) and (3d) in CF<sub>3</sub>CO<sub>2</sub>H-MeOH produced a bilene-*b* salt which, without isolation, was heated with copper acetate in MeCO<sub>2</sub>H-MeOH.<sup>9</sup> Treatment of the resultant porphyrin copper complex with H<sub>2</sub>SO<sub>4</sub> not only removed the metal but also hydrolysed the acetoxyethyl substituents. The derived porphyrin diol was a sparingly soluble compound and hence difficult to handle. Thus, the crude product was transformed by treatment with NN-dimethylformamide-Ph-

COCl<sup>10</sup> into the dichloro analogue (4a), m.p. 247—249 °C, (25% yield from the dipyrrylmethanes) for purification and characterisation.<sup>†</sup> Reduction of the acetyl group in (4a) with NaBH<sub>4</sub>, and dehydration of the derived hydroxyethylporphyrin with PhCOCl–NN-dimethylformamide<sup>11,12</sup> gave the vinyl compound (4b), m.p. 247—248 °C (decomp.),





268-270 °C, 88%. When (4c) was refluxed under nitrogen in aqueous pyridine containing NaOH, the ester group was hydrolysed and vinyl substituents were generated at positions 2 and 4 to yield (4d). Condensation of (4d) with methyl hydrogen malonate in pyridine containing piperidine gave the acrylate ester (4e), m.p. > 300 °C, 35% yield from (4c), Oxalyl chloride converted (4e) into its acid chloride derivative from which the  $\beta$ -ketoester (4f), m.p. 300 °C, 40%, was obtained as a mixture of keto and enol tautomers by reaction with the magnesium chelate (5).<sup>14</sup> A solution of (4f) in CH<sub>2</sub>Cl<sub>2</sub> was treated with thallium(III) trifluoroacetate (2.5 equiv) in tetrahydrofuran containing CF<sub>3</sub>CO<sub>2</sub>H, and the mixture irradiated for 15 min by exposure to sunlight.<sup>15</sup> Demetallation<sup>16</sup> of the product yielded (1c), m.p. 290 °C (decomp.), 27% yield from (4f);  $\delta$  (CF<sub>3</sub>CO<sub>2</sub>D): 11.14 (1H), 11.04 (1H), 11.01 (1H, CH), 9.22 (1H, d, J 16 Hz, CH: CHCO<sub>2</sub>Me), 8.25 (2H, m, CH: CH<sub>2</sub>), 7.24 (1H, d, J 16 Hz, CH: CHCO<sub>2</sub>Me), 6.52 (4H, m, CH:  $CH_{2}$ ), 4.24 (3H), 4.01 (3H), 3.93 (6H), and 3.83 (6H, 4×Me,  $2 \times OMe$ ; in CF<sub>3</sub>CO<sub>2</sub>H the enolic proton at C-10 was observed at  $\delta$  7.61;  $\lambda_{max}$  (CHCl<sub>3</sub>)(log  $\epsilon$ ): 440 (5.22), 535.5 (4.05), 540 (4.09), 597.5 (4.10), and 656 (3.15) nm.

† All new compounds had spectroscopic and analytical data in agreement with the proposed structures.

Much of the structural work on the chlorophylls c was carried out on a mixture of the two components and extensive data on the pure magnesium-free derivatives are not available in the literature. However, the n.m.r. and electronic spectra of our synthetic material agree closely with published results.2,3

We thank the Australian Research Grants Committee for financial support.

(Received, 2nd June, 1975; Com. 607.)

- <sup>1</sup>S. W. Jeffrey, Biochim. Biophys. Acta, 1969, 177, 456.
  <sup>2</sup>R. C. Dougherty, H. H. Strain, W. A. Svec, R. A. Uphaus, and J. J. Katz, J. Amer. Chem. Soc., 1966, 88, 5037; 1970, 92, 2826.
  <sup>3</sup>H. Budzikiewics and H. Taraz, Tetrahedron, 1971, 27, 1447.
  <sup>4</sup>R. P. Carr, A. H. Jackson, G. W. Kenner, and G. S. Sach, J. Chem. Soc. (C), 1971, 487.
  <sup>5</sup>P. S. Clezy and A. J. Liepa, Austral. J. Chem., 1970, 23, 2443.
  <sup>6</sup>R. Chong, P. S. Clezy, A. J. Liepa, and A. W. Nichol, Austral. J. Chem., 1969, 22, 229.
  <sup>7</sup>P. S. Clezy and V. Diakiw, Austral. J. Chem., 1973, 26, 2697.
  <sup>8</sup>G. W. Kenner, K. M. Smith, and J. F. Unsworth, J.C.S. Chem. Comm., 1973, 43.
  <sup>9</sup>P. S. Clezy, A. J. Liepa, and N. W. Webb, Austral. J. Chem., 1972, 25, 1991; P. S. Clezy and V. Diakiw, *ibid.*, in the press.
  <sup>10</sup>D. R. Hepburn and H. R. Hudson, Chem. and Ind., 1974, 664.
  <sup>11</sup>P. S. Clezy and A. I. Liepa, Austral. J. Chem., 1970, 23, 2477.

- <sup>11</sup> P. S. Clezy and A. J. Liepa, Austral. J. Chem., 1970, 23, 2477
   <sup>12</sup> P. S. Clezy and C. J. R. Fookes, Austral. J. Chem., 1974, 27, 371.
   <sup>13</sup> F. Sparatore and D. Mauzerall, J. Org. Chem., 1960, 25, 1073.
   <sup>14</sup> G. Bram and M. Vilkas, Bull. Soc. chim. France, 1964, 945; M. T. Cox, A. H. Jackson, G. W. Kenner, S. W. McCombie, and K. M. With J. C. S. Berkin, I. 1074, 516. Smith, J.C.S. Perkin I, 1974, 516. <sup>15</sup> G. W. Kenner, S. W. McCombie, and K. M. Smith, J.C.S. Perkin I 1974, 527.
- <sup>16</sup> S. W. McCombie and K. M. Smith, Tetrahedron Letters, 1972, 2463.